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Abstract 

 
Computer-assisted vertebra segmentation in x-ray 
images is a challenging problem. Inter-subject 
variability and the generally poor contrast of digitized 
radiograph images contribute to the segmentation 
difficulty. In this paper, a semi-automated live wire 
approach is investigated for vertebrae segmentation.  
The live wire approach integrates initially selected user 
points with dynamic programming to generate a closed 
vertebra boundary. In order to assess the degree to 
which vertebra features are conserved using the live 
wire technique, convex hull-based features to 
characterize anterior osteophytes in lumbar vertebrae 
are determined for live wire and manually segmented 
vertebrae. Anterior osteophyte discrimination was 
performed over 405 lumbar vertebrae, 204 abnormal 
vertebrae with anterior osteophytes and 201 normal 
vertebrae. A leave-one-out standard back propagation 
neural network was used for vertebrae segmentation. 
Experimental results show that manual segmentation 
yielded slightly better discrimination results than the 
live wire technique. 
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1. Introduction 
 
Computer-assisted segmentation of vertebrae in cervical 
and lumbar spine x-ray images is a challenging problem.  
Several techniques have been investigated for vertebra 
segmentation in digitized radiographs, including Active 
Shape Models (ASM) [1-3], the Hough Transform [4], 
and edge-based object location and border detection. For 
ASM and similar types of approaches, the user provides 
an initial boundary. The limitations of approaches where 
the user provides an initial approximation of the object 
boundary include: 1) the user cannot determine the 
appearance of the final boundary until the algorithm 
converges, 2) the approach is sensitive to noise in the 
convergence of the algorithm to the final boundary, 3) 

user interactions with intermediate boundaries obtained 
from the algorithm results require the algorithm to be re-
executed. Factors making computer-based segmentation 
difficult include inter-subject variability and the generally 
poor contrast of digitized radiograph images. Intelligent 
segmentation, also referred to as live wire, tools provide 
the capability to allow the user and the segmentation 
process to collaborate dynamically during object 
segmentation. The user selects objects of interest based 
on actions with the mouse over the image data. Live wire 
provides an interactive process where the user selects 
points along the object boundary and the computer-based 
segmentation algorithm determines an intermediate 
boundary connecting the selected points. The process is 
repeated until a closed boundary is generated. Editing 
and training capabilities can be used to modify the semi-
automatically determined boundaries as well as the 
capability to adapt to user and inter-image variability.  
 
The Lister Hill National Center for Biomedical 
Communications, a research division of the National 
Library of Medicine (NLM) has built a biomedical 
information resource consisting of digitized x-ray images 
and associated textual data from national health surveys. 
This resource, the Web-based Medical Information 
Retrieval System, is capable of retrieving images based 
on image characteristics, either alone or in conjunction 
with text descriptions associated with the images. There 
are around 17,000 x-ray images available for researchers 
interested in osteoarthritis, osteoporosis, degenerative 
disc disease etc. In this research and as part of the NLM 
initiative, a semi automated live wire technique is 
investigated for lumbar vertebrae segmentation.  
 
2. Live wire algorithm description 
 
In this research, the live wire algorithm was extended for 
application to lumbar vertebra segmentation.  A graphical 
user interface (GUI) was implemented to facilitate the 
application of the live wire algorithm, with all programs 
implemented using Matlab 6.1. The description of each 
step of the live wire algorithm is given in the following 
steps. 



2.1. Region of interest selection 
 
The first step in the algorithm is for the user to select a 
region of interest (ROI) containing the vertebra to be 
segmented.  The user is prompted to choose four corner 
points for the region of interest. The minimum and 
maximum row and column positions are determined from 
the user selected points to create a bounding box for the 
region of interest. Let I denote the Y row and X column 
gray level region of interest obtained from the original x-
ray image.  Fig. 1 presents an example region of interest 
obtained from a lumbar x-ray image. 
 

 
 

Fig. 1: Example of region of interest extracted 
from a lumbar x-ray image.   
  
2.2. Image enhancement and initial point selection 
 
After bounding box determination, the region of interest 
is zoomed by a magnification factor of two to assist the 
user in the semi-automated segmentation process. For this 
live wire implementation, the region of interest gray level 
image I is low-pass filtered using the Discrete Cosine 
Transform (DCT). Only the low frequency portion of the 
image is extracted from the DCT transform frequency 
domain. The lower frequency part of the image lies in the 
upper left corner of the DCT of the image. So, the DCT 
coefficients that lie within the rectangular region 

and , where U = Y/2 and J = X/2 
are extracted for a lower resolution of the original ROI 
image which has Y rows and X columns. The DCT values 
outside this rectangular region are set to 0 in the DCT 
matrix. The inverse DCT transform was applied to the 
resulting low pass filtered DCT coefficient image to 
generate an enhanced image E. After DCT-based 
enhancement over the region of interest, a message 
prompts the user to select points along the vertebrae 
boundary for segmentation. For the lumbar x-ray image 
set examined in this research, approximately 40 initial 
points were selected around each vertebra boundary.  
  
2.3. Watershed transform 
 
The watershed algorithm is applied to the filtered DCT 
image E to obtain contours used to determine the vertebra 
boundary. The watershed algorithm implementation 
presented in [6] was used. The difference between the 
ordinary watershed and the watershed after DCT based 
filtering is shown in Fig. 2 for an original gray level 

region of interest. Fig. 2(a) gives the output of the 
watershed algorithm using only the original grayscale 
image, and Fig. 2(b) presents the output of the watershed 
algorithm after DCT enhancement. Observing Fig. 2, it 
can be seen that the watershed regions are much less 
noisy in the DCT enhanced image (Fig. 2(b)) than in the 
original image (Fig. 2(a)).   The watershed representation 
for the original gray level image in Fig. 1(a) has 
numerous small regions, which add complexity to the 
process for determining the vertebra boundary.  Let W 
denote the resulting watershed image with Y rows and X 
columns. Then, Z denotes the watershed boundaries such 
that 

    (1) 

where, 1≤ x ≤ X and 1≤ y ≤ Y. 
 

 
                 (a)                                        (b) 
 
Fig. 2: Example of watershed algorithm applied 
to original gray level and corresponding DCT 
enhanced images.   (a)  Watershed algorithm 
applied to original grayscale image.  (b) 
Watershed algorithm applied to DCT enhanced 
image. 
 
2.4. Dynamic programming approach to determine 
vertebra boundary  
 
The watershed transform gives a value of zero to edges 
and higher values to other regions. The resultant image 
after watershed transform is considered as a graph. Each 
path in the graph has to be assigned a cost and the image 
is converted to a cost matrix. Now, finding the optimal 
path is just a problem of finding the lowest cost path 
pixel-wise. 
 
The live wire algorithm uses dynamic programming 
which provides a cost minimization problem between any 
two given points in the image. A cost is associated with 
every pixel. A path is two-dimensional between any two 
points in the image. The dynamic programming 
implementation used in this research applies the 
algorithm developed by Mortensen et al. [5], which uses 
the following constraints for 4-connected and 8-
connected neighbors for each pixel along the path 
between source pixel p and destination pixel q. Any pixel 



in the image is surrounded by 8 neighboring pixels. Each 
pixel has an 8-connected neighborhood, except for the 
image boundary cases. In order to traverse a path from 
the source to the destination in a two-dimensional sense, 
the path must be able to go through the diagonal pixels 
also. The 4-connected neighborhood, namely the left, 
right, top, bottom are the closest to any given pixel. So, a 
path should go to the 4-connected neighbors instead of 
the 8-connected neighbors if both have the same cost. In 
other words, the 4-connected neighbors are preferred to 
an 8-connected neighbor. But if the cost through the 4-
connected neighbor is above a certain limit, then it is 
better to route the path through the 8-connected 
neighbors. While routing a path from point p to point q, it 
is always necessary to consider the 4-connected and the 
8-connected neighborhoods. Since 4 connected neighbors 
are preferred to 8-connected neighbors, a higher cost is 
assigned to 8-connected neighbors than 4-connected 
neighbors. The weighting function w(p,q) used for a 
neighbor q to a pixel p is  

 (2).                         

           (3). 
where, Lx and Ly are the horizontal and vertical 
components of the link vector L, w(p,q) is the weighting 
function assigned for the cost calculation between the 
pixels p and q,  represents logical AND operation and 

 represents logical OR operation. L is the normalized 
bidirectional link or unit edge vector between pixels p 
and q and simply computes the direction of the link 
between p and q. Links can be vertical, horizontal or 
diagonal. Equation (2) refers to the 4-connected 
neighbors, and Equation (3) refers to the diagonal 
neighbors and equation. The initial user selected points 
(see section 2.1) are stored consecutively. For dynamic 
programming, the initial two user chosen points are 
processed first.  If p is the starting pixel, q is the ending 
pixel (where p and q are consecutive user entered points). 
The least cost path between the two points is computed 
using the watershed boundaries as a guide for path 
determination. The least cost path between p and q results 
in a partial boundary segment between and including the 
initial two points.  This procedure is repeated until a 
closed optimal path is obtained using the user selected 
input points. 
 
The algorithm to determine the least cost path is 
presented in detail in [5] and is overviewed here.  Let s be 
the start or source point for which the costs to all 
neighboring pixels are to be found. The local cost 
function c(p,q) is the cost assigned for the path between 
pixels p and q which is initialized to 0. Let A represent 
the list of active pixels or pixels which are being 
considered for the optimal path between p and q.  Let N4 
contain the list of all 4-connected neighbors of pixel p, 
and N8 contain the list of all the 8-connected neighbors of 

pixel p.  Then, N consists of all pixels in both N4 and N8. 
Let K contains all the pixels positions within a radius of 
20 pixels from starting pixel p. Let R(p) contain the 
cumulative link cost of all the neighboring pixels to p. Let 
D maintains the indices of all the active pixels, and Dtemp 
is used for storing indices temporarily. w has the 
associated weights for all of the neighboring pixels to p.  
Let F contain the final list of pixels which encompass the 
lowest cost path. For the algorithm used,  was 
experimentally determined, where ε is the Euclidean 
distance between p and q. Using this algorithm, the 
optimal path was found by searching the graph for the 
lowest cost path in the image.  The algorithm first used 
the entire image for the graph search. It calculates the 
shortest path for all the pixels in the image. With larger 
images, the considerable computations are required, 
making the algorithm non-suitable for real time usage.  
Accordingly, the graph search was confined to a radius of 
20 pixels from the user specified point, as specified with 
the parameter K.  Note that K was empirically determined 
based on the quality of the vertebra boundary paths 
obtained and the goal of reducing the computation time 
required for the dynamic programming algorithm.   
 
2.5. Convex hull postprocessing 
 
The final step to obtain the vertebra boundary is to 
determine the convex hull from the set of closed 
boundary points F, obtained from the dynamic 
programming-based piecewise paths based on the user 
selected points.  The convex hull of a data set is the 
smallest convex region that contains the data set of points 
[5]. The convex hull was applied to F for boundary 
smoothing. Let S denote the resulting convex hull output, 
representing the final set of points for the vertebra 
boundary. The convex hull algorithm developed by 
Barber et al. was used in this research [6].  Fig. 3 presents 
a vertebra image example showing the vertebra boundary 
before the convex hull (b) and after the convex hull is 
determined (c). 
 

       
          (a)                       (b)                         (c) 
 
Fig. 3: Example of convex hull for boundary 
smoothing. (a) Original grayscale image. (b) Live 
wire segmentation before convex hull. (c) After 
applying convex hull. 
 
2.6. GUI implementation 
 
The GUI implementation allows the user to select the 
region of interest for segmenting an individual vertebra in 



an x-ray image. The GUI then allows the user to select 
points along the vertebra for determining the vertebra 
boundary based on the algorithm presented in sections 
2.4-2.5.  Finally, the GUI provides the user the capability 
to edit the final boundary by removing portions of the 
vertebra boundary that are incorrect and selecting 
additional points in regions where the vertebra boundary 
is incorrect and re-executing the algorithm in sections 
2.4-2.5 to generate the revised vertebra boundary. In 
order to remove portions of the closed boundary, the user 
selects the Remove button. The user is prompted to select 
the upper left and lower right positions of a rectangular 
region that is removed from the displayed boundary.  The 
boundary is updated by connecting the points along the 
rectangular box on the sides closest to the centroid of the 
original closed boundary vertebra to the end points of the 
open vertebra boundary.  In order to add additional points 
to update the vertebra boundary, the user selects the Edit 
button. The user is prompted to insert two additional 
points along the desired boundary. A list of four 
sequential points is generated based on determining the 
closest boundary point to each of the two user selected 
points.   The updated boundary is found by re-executing 
the dynamic programming and convex hull methods for 
piecewise-segment determination in sections 2.4-2.5.  
The resulting closed boundary is filled, and any 
intermediate segments found inside of the vertebra are 
removed.  Finally, a user may save a vertebra boundary 
by selecting the Save button. 
 
3. Anterior osteophyte feature extraction 
 
In previous research, manually segmented vertebrae were 
used for the determination of on vertebral distortion along 
the anterior boundary as an indicator of osteophytes. In 
order to evaluate the capability of the live wire segmented 
vertebrae to preserve key vertebrae features such as the 
presence of anterior osteophytes, the convex hull-based 
features were computed over a lumbar vertebrae data set 
segmented manually and using the live wire technique. 
The convex hull-based features are presented in detail in 
[5] and are overviewed here. The features are computed 
for a vertebra segmented from the gray level region of 
interest I, where 1 ≤ x ≤ X and 1 ≤ y ≤ Y.  Let V denote a 
lumbar vertebra within an x-ray image with area Av such 
that 

   (4).    

The convex hull for V is determined using the quick 
convex hull algorithm [6].   Let B denote the resulting 
filled convex hull for vertebra V such that 

    (5). 

Let P denote the set of exclusive-or points between V and 
B such that . P contains one 
or more connected regions for each concave vertebral 
side. Let Q denote the number of unique 8-connected 
components within P. The four features used for 
detecting anterior osteophytes include:  1) the ratio of the 
vertebral area to the convex hull area, 2) the ratio of the 
exclusive-or area to the convex hull area, 3) the ratio of 
the exclusive-or area on the vertebra’s anterior side to the 
vertebra area and 4) the ratio of the area of the largest 
connected region from the exclusive-or regions on the 
anterior side of the vertebra to the vertebra area. These 
features are size invariant thus allowing direct 
comparison of different vertebrae. The first feature, 
which is the ratio of the vertebral area to the filled convex 
hull denoted as α, is defined as 

     (6). 

where AV is the vertebral area and AC is the convex hull 
area.  The ratio of the exclusive-or area to the filled 
convex hull area is denoted as β and is defined as 

     (7). 

In order to compute the final two exclusive-or-based 
features, the centroid location, (xc, yc), is calculated for the 
vertebra V and the connected regions within P are 
labeled.  Then, the original XY plane is mapped to a new 
X1Y1 plane for V, which is centered at the centroid 
location with the axes parallel to the original axes.  
Connected components in E that are on the right hand 
side of the X1Y1 plane and located on the posterior side of 
the vertebra are removed.  Let G denote the number of 
connected components remaining on the anterior side. Let 

refer to the set of connected 

components remaining with areas given by for 1 ≤ i ≤ 
G.  The third feature, which is the ratio of the exclusive-
or area on the vertebra’s anterior side to vertebral area, is 
denoted as γ and is defined as 

  (8) 

The final convex hull-based feature is based on finding 
the largest connected component on the anterior side. The 
connected components in P that are located on the 
anterior side of the vertebra are selected.  Let b denote the 
number of connected components on the anterior side of 
the vertebra that are selected and  
refers to the set of connected components remaining with 
areas given by for 1 ≤ i ≤ b. Then, the ratio of the 
largest connected region from the exclusive-or regions on 



the anterior side of the vertebra to the vertebral area is 
denoted as δ and is defined as 

   (9). 

These features were extracted for both the manually 
drawn and the live wire determined borders. 
 
4. Experiments performed 

 
A data set of lumbar spine x-ray images obtained from 
the NLM was used for comparing anterior osteophyte 
discrimination based on manually segmented vertebrae 
and live wire segmented vertebrae.  For classification 
purposes, vertebrae are labeled normal or abnormal, 
where an abnormal vertebra has anterior osteophytes in 
one or both of the anterior side corners.  A set of 405 
images were selected for vertebrae segmentation of which 
204 are abnormal and 201 images were normal. An 
expert radiologist manually labeled the upper and lower 
anterior and posterior side points, the top and bottom side 
center points, the anterior side midpoint, and, for a 
vertebra with osteophytes on the top or bottom anterior 
corners, the point marking the maximum extent of the 
osteophyte.  For normal vertebrae only the upper and 
lower anterior and posterior side points, the top and 
bottom side center points, and the anterior midpoint are 
labeled. The four convex hull-based features [7] were 
computed for anterior osteophytes discrimination based 
on manually segmented vertebrae.  In this research, the 
vertebrae were segmented using the live wire approach 
overviewed above, and the convex hull-based features 
were computed for anterior osteophytes discrimination.  
Approximately 40 points were selected for the live wire 
segmentation process. After obtaining the closed vertebra 
boundary from the live wire process, no editing 
operations were performed. Anterior osteophyte 
discrimination was performed on the manual and live 
wire segmented vertebrae to test the capability of the live 
wire algorithm to preserve key vertebra features.   
  
Using the vertebrae segmented based on manual and live 
wire approaches, the convex hull-based features for 
anterior osteophytes discrimination were extracted over 
the lumbar image data set. Anterior osteophyte 
discrimination to classify the vertebrae into normal or 
abnormal was performed using a standard back 
propagation neural network, leave-one-out approach.  
The neural network architecture consisted of 4 input 
nodes and 2 hidden layers. The first hidden layer had 4 
nodes and the second hidden layer had 2 nodes with one 
node for the output.  Neural network training and testing 
was done using a leave-one-out approach for up to 15 
epochs, with neural network training terminating when 
the root-mean-square error (RMSE) was less than 0.1. 
 

5. Experimental results and discussion 
 
Fig. 4 presents two examples of manual and live wire 
segmented vertebra.  Fig. 4(a) and (b) correspond to the 
same vertebra and Fig. 4(c) and (d) also correspond to the 
same vertebra. 
 

     
                      (a)                             (b) 

       
                      (c)                             (d) 
 
Fig. 4: Examples of live wire and manual 
segmented vertebrae.  Live wire examples are in 
(a) and (c).  Corresponding manual examples 
are in (b) and (d). 
 
From Fig. 4, it can be observed that the manual vertebra 
boundary is smoother and less jagged than the 
corresponding live wire vertebra boundary. The leave-
one-out neural network approach classified vertebrae into 
normal and abnormal based on features computed using 
the manually drawn and the live wire algorithm drawn 
borders [8].  

 
Fig. 5: ROC curve results for anterior 
osteophyte discrimination for manual and live 
wire segmented vertebrae. 
 
The osteophytes discrimination results using live wire- 
and manually segmented vertebrae were compared using 
receiver operating characteristic (ROC) curves (Fig. 5). 



From Fig. 5, the manually drawn borders have a better 
detection rate and a lower false alarm rate than the live 
wire method. The neural network results yielded 80% 
correct anterior osteophytes detection with 22% false 
alarms for the live wire segmented vertebrae and 18% 
false alarms for the manually segmented vertebrae. A 
false alarm refers to classifying a normal vertebra as 
containing anterior osteophytes. Overall, the experimental 
results showed that the live wire borders did a reasonable 
job of preserving anterior osteophytes for the convex 
hull-based features examined compared to manual 
borders, with manual borders providing improved 
anterior osteophytes discrimination. The reason for 
missing or false alarm may be due to any one or a 
combination of factors.  First, in the live wire algorithm 
drawn borders, due to the rugged boundary, sometimes 
the abnormality is missed since there is not much 
difference between them. Second, the sharper, more 
obvious, osteophytes are detected more easily than the 
bigger and broader osteophytes cases.  Third, the angle of 
curvature of the osteophyte(s) from the vertebra is 
important for anterior osteophytes discrimination based 
on the convex hull-based features examined.  Concavities 
in the anterior and lower parts of the vertebrae boundary 
also represent abnormality. An absence of the concavity 
may be seen as lack of abnormality, and the presence of 
the concavity may be instrumental in identifying a 
vertebra as abnormal. Obviously, the greater the number 
of input points given by the user, the higher is the quality 
of the segmented vertebra. However, an increase in the 
number of points selected by the user increases the 
number of computations and thus takes a lot of valuable 
time for the user. A reasonably good number of points are 
required especially around the abnormality and curvature 
due to the presence of noise for proper detection. Due to 
the rugged irregular boundary (live wire drawn), 
sometimes the irregularities are classified as 
abnormalities. The perception of the vertebra boundary 
by the user plays an important role in the user-assisted 
vertebra boundary determination. The boundaries in the 
watershed image are used to guide the selection of the 
path between the user selected points.  For the image data 
examined in this research, the watershed boundaries 
appear to be located in the center of the edges along the 
vertebra boundary, where strong edges are present.  
Accordingly, the live wire algorithm is sensitive to the 
user selected points for boundary determination, where 
the live wire algorithm yields higher quality segmented 
vertebrae when the user selects points as close to the 
actual vertebra boundary as possible.   
 
6. Summary 
 
This research investigated a semi-automated live wire 
technique for vertebra segmentation. Vertebra image 
segmentation was done using a combination of DCT 

enhancement, user selected points, watershed-based 
boundary determination, dynamic programming path 
searching, and convex hull post processing. The live wire 
was implemented using Matlab with an easy to use GUI 
interface with provisions for editing. The robustness of 
the live wire algorithm was analyzed relative to manual 
segmentation for identifying anterior osteophytes.  
Experimental results showed that the live wire borders 
did a reasonable job of preserving anterior osteophytes 
for the convex hull-based features examined compared to 
manual borders, with manual borders providing improved 
anterior osteophytes discrimination. Utilizing user 
interaction with the live wire algorithm should yield 
improvement in the quality of the segmented vertebrae 
and lead to better preservation of key vertebrae features. 
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